Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Healthc Eng ; 2022: 4242888, 2022.
Article in English | MEDLINE | ID: covidwho-2098042

ABSTRACT

Psychological interventions have been shown to be beneficial in mitigating stress related to COVID-19 confinement. According to theories of restorative environments, exposure to natural surroundings has positive effects on well-being and stress through its restorative qualities. With 360° video-based Virtual Reality (VR), people can be exposed to nature and so better manage the consequences associated with mobility restrictions during confinement. The main aim of this pilot study was to examine whether a 360° video-based VR intervention composed of five 13-minute sessions (once a day) has positive effects on affect, well-being, and stress. The sample was made up of 10 participants (4 men and 6 women; age : M = 46.5, SD = 11.7) who were confined at home (voluntarily or not) during the COVID-19 pandemic. Participants were instructed to watch a 360° video each day (of a "beach" or "lake" environment) using their smartphone and VR glasses sent to them by mail. Participants responded with several self-reports before and/or after each session (emotions and sense of presence) and before and/or after the intervention (affect, well-being, perceived stress, perceived restorativeness of nature, and the usefulness and acceptability of the intervention). Results showed a tendency to improve positive (e.g., happiness) and negative (e.g., anxiousness) emotions and experience a high sense of presence after each session. Moreover, perceived restorative qualities of the environment and their cognitive and behavioral effects were high. A significant decrease in negative affect was found after the intervention. Usefulness and acceptability were also high. This is the first study to show that an affordable and accessible technology can be used to overcome the negative consequences of confinement and counteract its harmful psychological effects.


Subject(s)
COVID-19 , Emotions , Female , Humans , Male , Pandemics , Pilot Projects , Psychosocial Intervention
2.
Microbiol Spectr ; 10(2): e0164221, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1774934

ABSTRACT

Due to the emergence of multidrug-resistant strains of yeasts belonging to the Candida genus, there is an urgent need to discover antifungal agents directed at alternative molecular targets. The aim of the current study was to evaluate the capacity of three different series of synthetic compounds to inhibit the Candida glabrata enzyme denominated 3-hydroxy-methyl-glutaryl-CoA reductase and thus affect ergosterol synthesis and yeast viability. Compounds 1c (α-asarone-related) and 5b (with a pyrrolic core) were selected as the best antifungal candidates among over 20 synthetic compounds studied. Both inhibited the growth of fluconazole-resistant and fluconazole-susceptible C. glabrata strains. A yeast growth rescue experiment based on the addition of exogenous ergosterol showed that the compounds act by inhibiting the mevalonate synthesis pathway. A greater recovery of yeast growth occurred for the C. glabrata 43 fluconazole-resistant (versus fluconazole-susceptible) strain and after treatment with 1c (versus 5b). Given that the compounds decreased the concentration of ergosterol in the yeast strains, they probably target ergosterol synthesis. According to the docking analysis, the inhibitory effect of 1c and 5b could possibly be mediated by their interaction with the amino acid residues of the catalytic site of the enzyme. Since 1c displayed higher binding energy than α-asarone and 5b, it is the best candidate for further research, which should include structural modifications to increase its specificity and potency. The derivatives could then be examined with in vivo animal models using a therapeutic dose. IMPORTANCE Within the context of the COVID-19 pandemic, there is currently an epidemiological alert in health care services due to outbreaks of Candida auris, Candida glabrata, and other fungal species multiresistant to conventional antifungals. Therefore, it is important to propose alternative molecular targets, as well as new antifungals. The three series of synthetic compounds herein designed and synthesized are inhibitors of ergosterol synthesis in yeasts. Of the more than 20 compounds studied, two were selected as the best antifungal candidates. These compounds were able to inhibit the growth and synthesis of ergosterol in C. glabrata strains, whether susceptible or resistant to fluconazole. The rational design of antifungal compounds derived from clinical drugs (statins, fibrates, etc.) has many advantages. Future studies are needed to modify the structure of the two present test compounds to obtain safer and less toxic antifungals. Moreover, it is important to carry out a more in-depth mechanistic approach.


Subject(s)
COVID-19 , Candida glabrata , Acyl Coenzyme A , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida glabrata/metabolism , Drug Resistance, Fungal , Ergosterol/metabolism , Fibric Acids/metabolism , Fluconazole/metabolism , Fluconazole/pharmacology , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/metabolism , Microbial Sensitivity Tests , Pandemics , Pyrroles/metabolism , Pyrroles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL